A Fuzzy Algorithm for Parameter Estimation of a Superheater System
نویسنده
چکیده
The Fuzzy State Space algorithm (FSSA) is the main feature in the development of the Fuzzy State Space Model (FSSM) for solving inverse problems in multivariable dynamic systems. Traditionally, such inverse problems have been addressed by repeated simulation of forward problems, which requires excessive computer time and thus can be very costly. In the formulation of the FSSA, the uncertain value parameters of the system to be controlled are represented by triangular fuzzy numbers with their membership function derived from expert knowledge. The optimal combination of the input parameters was extracted using the Modified Optimized Defuzzified Value Theorem. In this paper, this fuzzy algorithm is implemented to the FSSM of a superheater system of a combined cycle power generation plant. The result reveals that the proposed approach is reasonable and effective. To take advantage of the effectiveness and some distinguish features of the FSSA, a graphical user’s interface is developed using Visual Basic programming tool. This computational tool is flexible and can be adaptable to other multivariable systems. Besides providing an efficient computation for estimating the optimal combination of the parameters, it is an innovative tool for industrial applications. Key-Words: Fuzzy graph; Graphical Fuzzy State Space Model; Inverse problems; Uncertainty modeling
منابع مشابه
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملA Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements
This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملParameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملA Fuzzy-GA Approach for Parameter Optimization of A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution as a learning and optimization technique has been vastly concentrated for improving fuzzy expert systems. In this paper, the GA...
متن کامل